Where?
Upon which targets can we dispense, print and spot?
Unlimited Options
The variety of possible targets that can be dispensed upon is infinite.
Fom the simple nitrocellulose membrane to 3D structures in microfluidics: Our Microdispensing Instruments can handle any target.
The targets are often held in place by a vacuum table, but they are sometimes held in place using various customer-specific clamping mechanisms meant to prevent slippage during the highly dynamic movements of the axis system.
Typical Targets
- Glass Slides
- Polymer Slides
- Silicon Wafers
- Biochemical Sensors
- Semiconductor Biochips
- Microtiter Plates
- Microcavities
- Microneedles
- Peptide Chips
- Functionalized Foils
- Diagnostic Membranes
- Microfluidic Cartridges
- Microfluidic Channels
- Lab-on-a-chip Applications
- 3D-Printed Structures
Lab-on-a-Chip Applications
The lab-on-a-chip concept revolutionizes diagnostics, expanding biosensor applications. The drive to analyze on-site using a droplet of biofluid propels lab-on-a-chip development. Market-ready products exist, often integrating biomolecules for binding and detection in cost-effective, plastic devices. Non-contact liquid handling efficiently inserts biomolecules and reagents into chip microstructures.
Disposable Biochip
Produced by injection moulding, these chips are popular in the mass production of financially competitive, multi-parameter diagnostic tests. As the most expensive parts of such chips are the immobilized biomolecules, handling pL or nL aliquots during production is mandatory, as is high-speed liquid deposition. Non-contact liquid handling is essential in order to achieve both.
Microtiter Plates
A common and traditional application in medical labs is the performance of ELISA tests in medium to large scale. Modern, more efficient applications analyze 100, 200 or even 400 parameters, instead of only one in each well. This can save a lot of money, time and, foremost, plastic waste. Check this application note on spotting into MTP plates. The key technology enabling this is non-contact liquid handling. As our iONE spotters are equipped with three high-speed, linear, magnetic drives (XYZ), they are the preferred spotter for high-throughput production.
Biosensors
Biosensors are related to lab-on-a-chip devices, but they also stand alone, and the worldwide market for them is growing. Size matters: The smaller and lighter they are, the better. Low production costs are important, too. Their detection specificity and sensitivity are determined by the immobilized biomolecules. They specifically bind to and, thereby, capture the target molecules to be detected. Depositing them in a solution onto tiny electrodes is a challenging element of their production, and non-contact dispensing is the method of choice to master this process. Structures as small as 50 µm can be individually addressed, and liquid can be deposited onto them without making the neighbouring, forbidden surfaces wet.
Membranes
Using membranes for immobilizing biomolecules is a well-established method in biochemistry and molecular biology for the detection of proteins and nucleic acids. PVD and nitrocellulose are the most common materials used, and Western Blotting is the best-known application. Although they have been around for many years, their popularity has not declined. Both provide, on a microscopic level, a large surface to which many biomolecules bind very well without additional chemical help. Non-contact deposition of many different biomolecules in close proximity is possible, and it enables efficient analysis. Allergy tests that include several hundred instead of only a few known allergens are a prominent example.
Microscope Slides
Microscope slides are a standard carrier for a lot of different applications. Among them are immobilized microarrays of: oligonucleotides for gene-expression analyses, peptides for epitope mapping, proteins for autoantibody screening. Check this application note for reference. Using hundreds or even thousands of different biomolecules in one experiment, instead of using only a few, opened the door to a new era of research. Today, DNA, peptide and protein microarrays are still powerful research tools. For their production, both contact-based and non-contact Microdispensers are used to transfer the biomolecules onto the slide surface.
DMA-Slides from Aquarray
Droplet Microarrays are transparent and planar arrays on glass slides of a unique, patented surface coating technology from Aquarray that enables the formation of defined and separated droplets on a liquid-repellent background. Aqueous solutions are trapped in these hydrophilic spots due to the extremely high surface tension. The droplets formed remain stably suspended even when the DMA is shaken or turned upside down. The technology allows the production of a wide range of patterns resulting in a range of 80 to 6048 spots per DMA and working volumes from 5000 nl down to 10 nl.
Custom-Specific Surfaces
The surfaces of biochips and biosensors are anything but standardized, in contrast to non-contact office printers where paper is the target surface. Custom-specific surfaces could be glass, ceramic or silicone, nano-sensor surfaces, as well as all kinds of plastic. In many cases, those surfaces may have been activated by cold plasma treatment or other methods of surface modification. Additionally, the geometry surrounding the target surface is anything but standardized. That is why the microdispensing technique, the robotic platform and the control software used for production must be adaptable and highly flexible.